Методы обработки трафика для улучшения качества обнаружения сетевых атак при помощи нейронных сетей

Николай Змитрович Исследователь ЦНИПР

Методы обнаружения компьютерных атак

Обнаружение признаков атак

- Сигнатуры
- Эмпирические правила
- о Экспертные системы

Обнаружение аномалий

- Статистические методы
- ∘ Методы ML

Обнаружение признаков атак

Основаны на экспертных знаниях о нелегитимном поведении

Преимущества

Высокая точность

Производительность

Слабые стороны

Возможность уклонения от известных методов обнаружения

Использование легитимных инструментов

Уязвимость к атакам нулевого дня

Обнаружение аномалий

Основаны на изучении нормального поведения

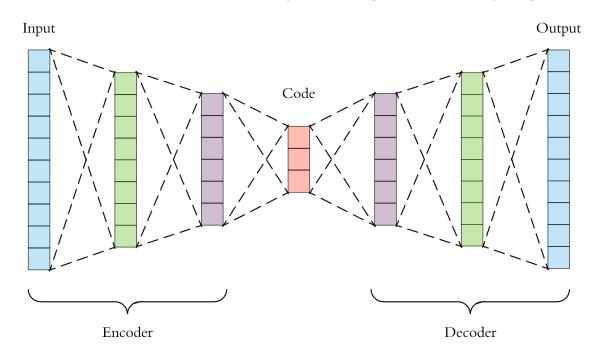
Преимущества

Универсальность

Затруднение обхода защиты

Не требуют частого ручного обновления

Слабые стороны


Требовательность к ресурсам для обучения модели

Определение типа атаки

Архитектура автокодировщика

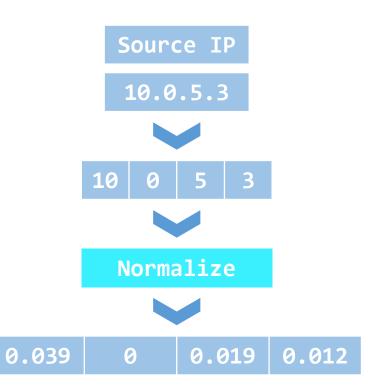
Архитектура нейронных сетей, основанная на восстановлении входного объекта из его сжатого (закодированного) представления

Модель данных

Объект анализа - сетевая сессия

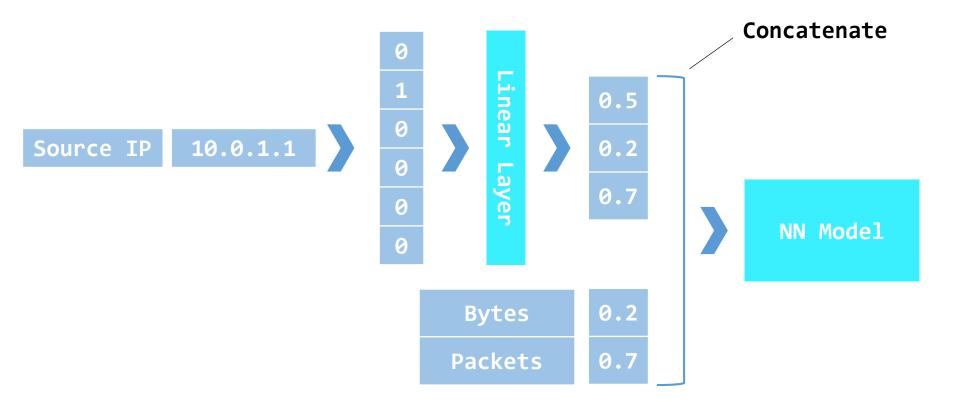
Параметры сессии	Вид параметра	
Идентификаторы хостов (IP, MAC адреса)	Категориальный	
Номер порта	Категориальный	
Протокол	Категориальный	
Длительность сессии	Численный	
Количество пакетов и байт	Численный	
Агрегирующие функции параметров сессий	Численный	
Информация о флагах	Численный	

Оцифровка категориальных параметров

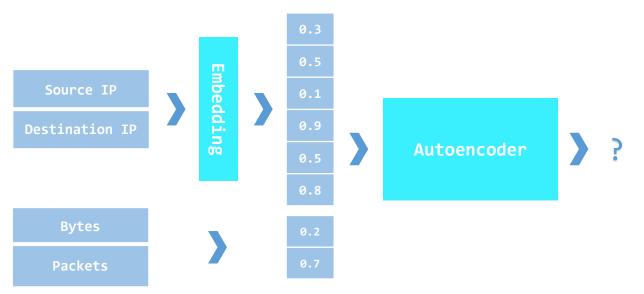


Label encoding One-hot-encoding (OHE) Binary encoding 0.1 0.9 Embedding

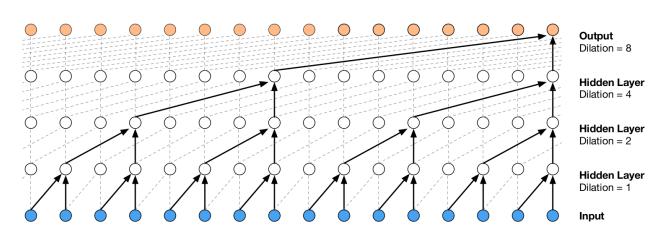
Метод оцифровки IP-адреса

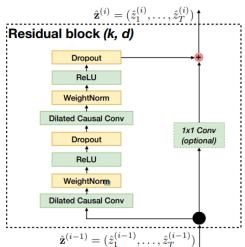


- Используется разбиение адреса на байты
- После нормализации столбцы конкатенируются с другими параметрами потока


Слой Embedding

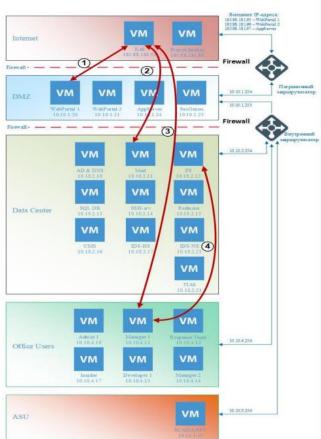
Проблемы Embedding слоев в архитектуре автокодировщика


Вариации архитектур


- 1. Восстановление значений Emdedding-a
- 2. Восстановление на выходе целочисленных меток
- 3. Восстановление ОНЕ категориальных значений

Temporal Convolutional Networks

Архитектура одномерной сверточной нейронной сети, использующая временную свертку


Набор данных

Набор данных основан на нормальном трафике сети ИнфоТеКС и АРТ-атаке, сгенерированной при помощи инструмента Ampire

Сессий нормального трафика: 325 968

Сессий атаки: 2834

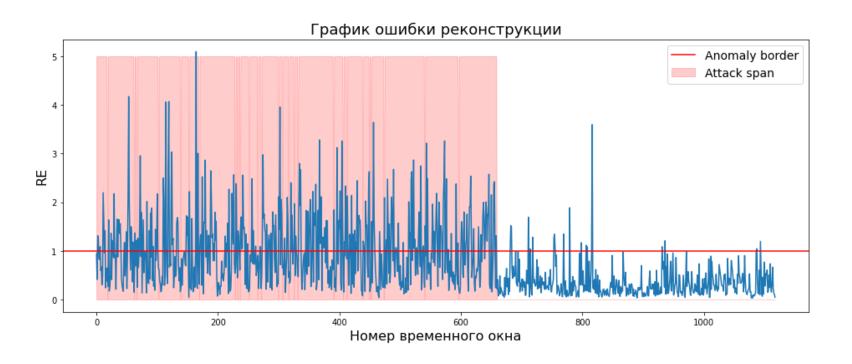
Сценарий атаки

- Сканирование активных хостов на предмет открытых HTTP/HTTPS портов.
- 2. Определение логина обнаруженной на этапе сканирования ОWA с полученными аутентификационными данными менеджера, определение адреса RDP из электронного письма в OWA.
- 3. Подключение и получение шелла от хоста менеджера с помощью бота.
- 4. Сканирование доступных сегментов сети на предмет поиска файлового сервера.
- 5. Сканирование обнаруженного файлового сервера на предмет обнаружения уязвимости MS17-010.
- 6. Эксплуатация уязвимости MS17-010, получение доступа к файловому серверу.

Методы оцифровки категориальных параметров:

Server Port - Label Encoding

Protocol - Label Encoding


Source IP - разделение на байты

Destination IP - разделение на байты

Функция ошибки - MSE loss для всех параметров

Модель TCAE – график ошибки реконструкции

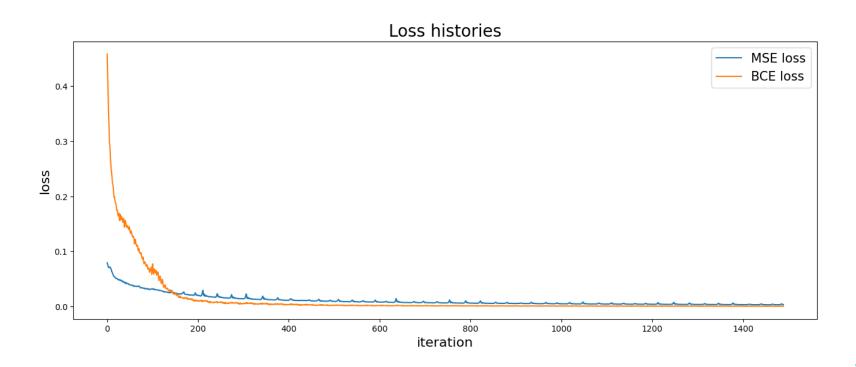
Moдель TCAE Double Loss Function (DLF)

Методы оцифровки категориальных параметров:

Server Port - Binary Encoding

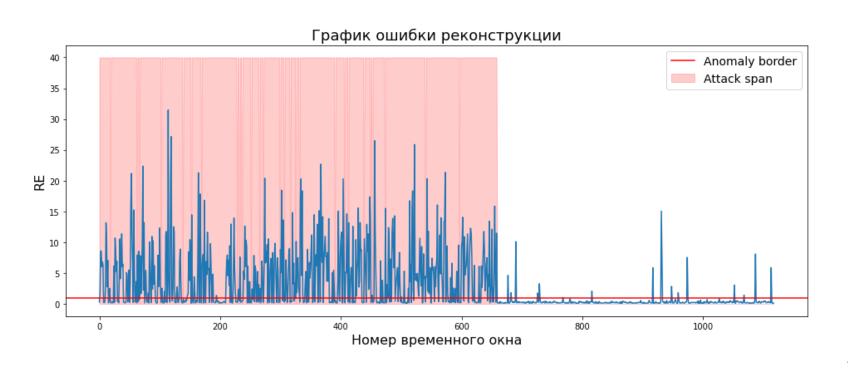
Protocol - Binary Encoding

Source IP – разделение на байты


Destination IP - разделение на байты

Функция ошибки - MSE loss для всех параметров кроме Server Port и Protocol

Функция ошибки - BCE loss для параметров Server Port и Protocol



Модель TCAE DLF – график ошибок при обучении модели

Модель TCAE DLF – график ошибки реконструкции

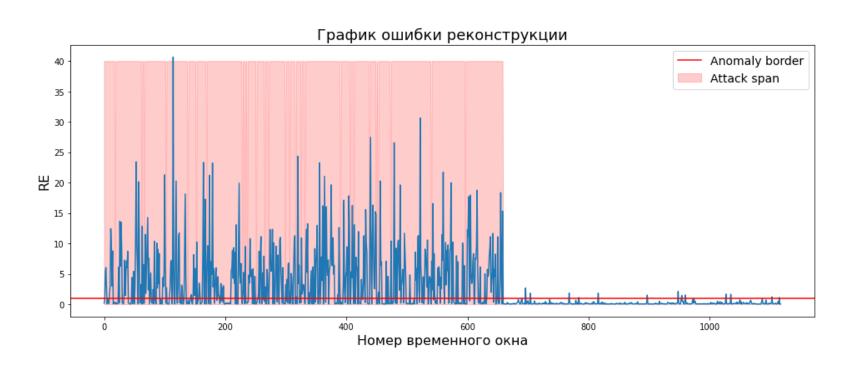
Mодель TCAE Embedding (EMB)

Методы оцифровки категориальных параметров:

Server Port - Embedding

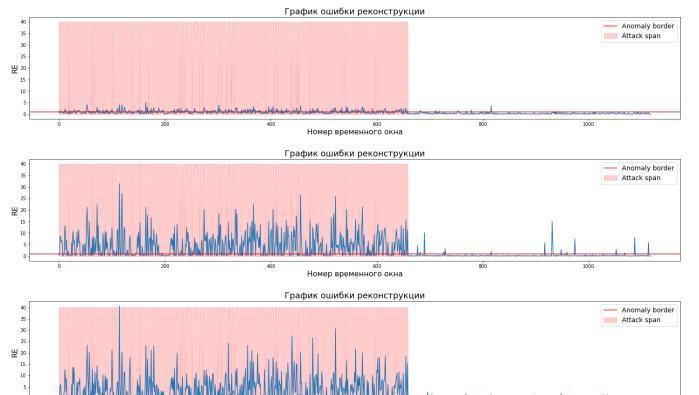
Protocol - Embedding

Source IP - Embedding


Destination IP - Embedding

Функция ошибки - MSE loss для всех параметров кроме Server Port, Protocol и IP адресов

Функция ошибки - Cross Entropy loss для параметров Server Port, Protocol и IP адресов



Модель TCAE DLF+EMB – график ошибки реконструкции

Сравнение результатов - графики

Номер временного окна

Model TCAE

Model TCAE+DLF

Model TCAE+DLF+EMB

Сравнение результатов - метрики

Model	ВА	Precision	Recall	F1
TCAE	0.62	0.89	0.28	0.42
TCAE DLF	0.77	0.95	0.57	0.71
TCAE DLF+EMB	0.91	0.91	0.93	0.92

Balanced Accuracy – показывает процент верных предсказаний с учетом дисбаланса классов

Precision – показывает отношение верно предсказанных аномалий ко всем предсказанным аномалиями (чем выше, тем меньше FP)

Recall – показывает отношение верно предсказанных аномалий ко всем аномалиям в наборе данных (чем выше, тем меньше FN)

Выводы

- Способ оцифровки данных существенно влияет на качество обнаружения атак.
- Совместное использование двух различных функций ошибки дает значительный прирост в качестве.
- Использование дополнительных Embedding слоев позволяет улучшить качество обнаружения атак, но при этом требует больше ресурсов для обучения модели.

Спасибо за внимание!

Подписывайтесь на наши соцсети

vk.com/infotecs news

https://t.me/infotecs official

rutube.ru/channel/24686363